16 Saving honey

Richard Hlubina

UK Bratislava
Introductory meeting TMF, Bratislava 9.11. 2021

Problem

When rotating a rod coated with a viscous liquid (e.g. honey), under certain conditions the liquid will stop draining. Investigate this phenomenon.

Literature

- German site (GYPT 2022): video https://www.gypt.org/aufgaben/16-saving-honey.html
- Canadian site: https://stemfellowship.org/iypt-references/problem16/
- first analytical discussion:
H. K. Moffatt, Behaviour of a viscous film on the outer surface of a rotating cylinder, J. Mec. 16, 651 (1977)
- more recent numerical analysis:
P. L. Evans, L. W. Schwartz, and R. V. Roy, Three-dimensional solutions for coating flow on a rotating horizontal cylinder: Theory and experiment, Phys. Fluids 17, 072102 (2005)
- see also:

Newtonian liquids, properties of honey
Navier-Stokes equations, capillary length, Rayleigh-Taylor instability

Acceleration of the liquid: 1. pressure

acceleration \vec{f} if the pressure field $p(\vec{x})$ is non-constant, $\rho=$ density

$$
\begin{aligned}
& F=-[p(x+d x)-p(x)] \cdot S \\
& f=\frac{F}{p d x \cdot S}=-\frac{p(x+d x)-p(x)}{d x} \\
& \vec{f}=-\frac{1}{p} \vec{\nabla} p
\end{aligned}
$$

Acceleration of the liquid: 2. viscous forces
acceleration if the velocity field is non-constant, $\nu=$ kinematic viscosity

interval friction:

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=\text { cost } \cdot[v(x+d x)+v(x-d x)-2 v(x)] \\
& v(x \pm d x)=v(x) \pm \frac{\partial v}{\partial x} \cdot d x+\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}} \cdot d x^{2} \\
& \frac{\partial v}{\partial t}=\text { court } \cdot \frac{\partial^{2} v}{\partial x^{2}} \\
& \frac{\partial \vec{v}}{\partial t}=\nu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{v}
\end{aligned}
$$

Acceleration of the liquid: 3 . inertial effects
if the velocity fields depends on both time and space coordinates:

$$
\begin{aligned}
& v(t+d t, x+d x)=v(t, x)+\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} \cdot \frac{d x}{d t} \\
& \frac{d v}{d t}=\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x} \cdot \frac{d x}{d t} \\
& \frac{d v}{d t}=\frac{\partial v}{\partial t}+\underbrace{\left(\frac{d x}{d t} \frac{\partial}{\partial x}+\frac{d y}{d t} \frac{\partial}{\partial y}+\frac{d z}{d t} \frac{\partial}{\partial z}\right) v}_{\vec{v} \cdot \vec{\nabla}} \\
& \frac{d \vec{v}}{d t}=\frac{\partial \vec{v}}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{v}
\end{aligned}
$$

so-called total (hydrodynamic) derivative

Navier-Stokes equations for honey

- Navier-Stokes equations:

$$
\frac{\partial \vec{v}}{\partial t}=\vec{g}-\frac{1}{\rho} \vec{\nabla} p+\nu(\vec{\nabla} \cdot \vec{\nabla}) \vec{v}-(\vec{v} \cdot \vec{\nabla}) \vec{v}
$$

- special case: fluid at rest, $\vec{\nabla}=0$; then $\vec{g}=\frac{1}{\rho} \vec{\nabla} p$
- our case:

- 8 parameters: $R, L, \Omega, h, g, \sigma, \rho, \nu$ to begin with, neglect L (two-dimensional approximation)

Dimensionless parameters

- 7 parameters: $R, \Omega, h, g, \sigma, \rho, \nu$
- three dimensionful parameters, e.g. R, g, and ρ
- four dimensionless parameters, e.g.:

$$
\begin{aligned}
\epsilon & =\frac{\text { thickness }}{\text { radius }}=\frac{h}{R} \rightarrow h \\
W & =\frac{\text { inertia }}{\text { gravity }}=\frac{R \Omega^{2}}{g} \rightarrow \Omega \\
N & =\frac{\text { viscous force }}{\text { gravity }}=\frac{\nu R \Omega / h^{2}}{g} \rightarrow \nu \\
S & =\frac{\text { capillary length }}{\text { radius }}=\frac{\sqrt{\sigma /(\rho g)}}{R} \rightarrow \sigma
\end{aligned}
$$

- various regimes!

Stationary solution of Moffatt

- assume:
$\epsilon \ll 1$ (thin films), $W \ll 1$ (inertia negligible),
$S \ll 1$ (surface tension negligible)
- current flows dominantly along the cylinder, component $u=u(r, \theta)$
- differential equation (only viscous and gravity terms):

$$
\nu \frac{\partial^{2} u}{\partial r^{2}}=g \cos \theta
$$

- boundary conditions for $r=R$ (inner) and $r=R+h(\theta)$ (outer surface):

$$
u(R)=R \Omega, \quad \frac{\partial u}{\partial R}=0
$$

- solution:

$$
u(r, \theta)=R \Omega+\frac{g \cos \theta}{2 \nu} f(r), \quad f(r)=r^{2}-2(R+h) r+R(R+2 h)
$$

Properties of Moffatt's solution

- total flow at angle θ

$$
J(\theta)=\int_{R}^{R+h} d r u(r, \theta)=R \Omega h-\frac{g h^{3}}{3 \nu} \cos \theta
$$

- since $J(\theta)=$ const, this defines the shape $h=h(\theta)$
- average thickness h_{0} possible only for $\Omega>\Omega_{c}$, where

$$
\Omega_{c}=\left(\frac{2 \pi}{4.443}\right)^{2} \frac{g h_{0}^{2}}{\nu R}
$$

Explanation of Moffatt's solution

- gravity force $\vec{g}=\vec{g}_{r}+\vec{g}_{\theta}$
- tangential part $g_{\theta}=-g \cos \theta$ compensated by viscous forces
- radial part $g_{r}=-g \sin \theta$ compensated by pressure, therefore

$$
\frac{1}{\rho} \frac{\partial p}{\partial r}=-g \sin \theta
$$

- (strange) solution for pressure $p(r, \theta)$:

$$
p(r, \theta)=p_{0}+\rho g(R+h-r) \sin \theta
$$

- pressure at surface: $p(R+h, \theta)=p_{0}=$ atmospheric pressure (equilibrium)

Opposite extreme: static cylinder $\Omega=0$

Weidner et al., J. Colloid and Interface Science 187, 243 (1997)

- surface tension can not be ignored any more
- length scale set by capillary length $\ell_{c}=\sqrt{\sigma /(\rho g)}$
- two-dimensional approximation: droplet hangs under the cylinder (a ridge at $\theta=-\pi / 2$ is formed)

Static cylinder $\Omega=0$, axial instability

Weidner et al., J. Colloid and Interface Science 187, 243 (1997)

- the ridge below the cylinder is unstable
- drops of size $\sim \ell_{c}$ form along the cylinder
- volume of the drops (units of ℓ_{c}^{3}):

Suggestions

- choose a highly viscous Newtonian liquid and a cylinder of radius R; determine how h_{0} (or mass of the liquid) depends on the frequency Ω; compare with theory; does an optimal Ω exist?
- try to estimate the material parameters σ, ρ, ν; identify the relevant dimensionless parameters
- do the results depend on the initial conditions of the experiment? how do the flow instabilities influence the results?
- try to change other parameters besides Ω
(e.g., temperature, radius R, length L, shape of the rod,...)

